THEORETICAL PROBABILITY

Learning Goal
- calculate theoretical probability

Theoretical = \# of "desired" outcomes Probability total \# of possible outcomes

Recall:

- The probability of an event is between 0 and 1
- Each outcome much be equally likely (fair conditions)

3C-2 - day 3-Theoretical Probability. notebook
Flipping a coin.

$$
P_{T}(\text { heads })=\frac{1}{2}
$$

theoretical
Rolling a dice.
a) $P_{T}($ five $)=\frac{1}{6}$
b) $P_{T}($ even $\#)=\frac{3}{6}=\frac{1}{2}$

3C-2-day 3 -Theoretical Probability. notebook
Playing cards.
a) P_{T} (heart) $=\frac{13}{52}=\frac{1}{4}$
b) $P_{T}($ ace $)=\frac{4}{52}=\frac{1}{13}$
c) $P_{T}($ face card $)=\frac{12}{52}=\frac{3}{13}$

Spinner

$$
\begin{aligned}
& P(\text { blue })=\frac{1}{4} \\
& P(\text { red })=\frac{1}{4} \\
& P(\text { green or orange })=\frac{2}{4}=\frac{1}{2} \\
& P(\text { blue })=\frac{1}{3} \\
& P(\text { green and blue })=\frac{0}{3}=0
\end{aligned}
$$

Tree Diagram

A tree diagram is an easy way of finding all the combinations of outcomes.

Make a tree diagram to show the outcomes for flipping a coin 3 times.

$$
\begin{aligned}
& P(3 H)=\frac{1}{8} \\
& P(2 H)=\frac{3}{8}
\end{aligned}
$$

Recall the example from last day...flipping 3 coins

	Experiment	Theory
P (zero tails)	$\frac{10}{50}$	$\frac{1}{8}$
P (1 tail)	$\frac{15}{50}$	$\frac{3}{8}$
$P(2$ tails $)$	$\frac{15}{50}$	$\frac{3}{8}$
$P(3$ tails $)$	$\frac{10}{S 0}$	$\frac{1}{8}$

If we do an experiment many of times, the experimental probability will theoretical probability.

A bag contains tiles of 3 different shapes. (squares, circles, and triangles)
Each shape can be four different colours. (red, blue, green, yellow)
a) Draw a tree diagram to represent the different possible outcomes of pulling 1 tile from the bag.
b) How many different possible outcomes (different tiles) are there?

c) What is the probability of choosing a circle?

$$
P_{T}(\text { circle })=\frac{4}{12}=\frac{1}{3}
$$

d) What is the probability of choosing a green or blue tile?
$P_{T}($ green or blue $)=\frac{6}{12}=\frac{1}{2}$
ex. Make a tree diagram to show the different possibilities for a family of 3 kids.

$\frac{4}{8}=\frac{1}{2}$
$P(2$ boys and a girl $)=\frac{3}{8}$
$P(2$ oldest are boys $)=\frac{2}{8}=\frac{1}{4}$
$P($ girls only $)=\frac{1}{8}$

1. A card is randomly selected from a standard deck of cards. Write the theoretical probability of each event as a fraction in lowest terms.
a) a spade $\frac{13}{52}=\frac{1}{4}$
b) a face card (jack, queen, or king) $\frac{12}{52}=\frac{3}{13}$
c. a heart, a club, or a jack

$$
13+13+J_{\text {spade }}+J_{s}
$$

$$
\frac{28}{52}=\frac{7}{13}
$$

3. Britt rolls a regular six-sided die. Find the theoretical probability of each event. Express your answer as a fraction in lowest terms.
a) rolling a 6
b) rolling a number greater than $3 \quad \frac{3}{6}=\frac{1}{2}$
c) rolling an 8 \square
d) rolling an even number

$$
\frac{3}{6}=\frac{1}{2}
$$

3C-2-day 3-Theoretical Probability. notebook
5. Suppose you roll two six-sided dice. Find the theoretical probability of rolling each sum. Express each answer as a fraction in lowest terms.
a) 2

$$
\frac{1}{36}
$$

b) 11

$$
\frac{2}{36}
$$

c) a sum greater than 5

$$
\frac{26}{36}=\frac{13}{18}
$$

36
different
possibilities

Homework
Handout +
Pg. 73 \# I.3.5.9. II

